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Abstract – In previous papers, we used one-step-ahead 

predictors for the genomic sequence recognition scores 
computation.  The genomic sequences are coded as distances 

between successive bases. The recognition scores were then used 
as inputs for a hierarchical decision system. The relevance of 

these scores might be affected by the prediction quality. It is 
necessary to appreciate the prediction performance in a 
framework based on the analyzed time series predictability. The 

aim of this paper is to determine which predictors are most 
suitable for genomic sequence identification. We analyze linear 

predictors (like linear combiner), neuronal predictors (RBF or 
MLP type), and neuro-fuzzy predictors (Yamakawa model 
based). Several methods to appreciate the predictability of time 

series are used, like Hurst exponent, self-correlation function, 
and eta metric. All predictors were tested and compared for 

prediction quality using sequences from HIV-1 genome. The 

mean square prediction error (MSPE), direction test, and Theil 
coefficient were used as prediction performance measures. The 

prediction results obtained with the predictors are contrasted 
and discussed. 

Keywords – Distance series, genomic sequences, predictability, 
prediction performances, recognition scores. 

I. INTRODUCTION 

Genomic sequences are represented as sequences of 

letters (A, C, G or T / U), that are the initials of nitric bases 

from ADN / ARN structures (Adenine, Cytosine, Guanine, 

Thymine / Uracil). This literal representation is improper 

for the computing systems used for the genomic sequence 

analysis. Numerous authors (see [1]) proposed different 

methods for representing the nitric bases or nucleotide 

sequences. The original representation used in this paper, 

proposed in [2], consists in the coding of genomic 

sequences by for time series, one four each basis type. Each 

series contains the distances between successive 

occurrences of the corresponding basis. Details about above 

mentioned coding can be found in [2], together with the 

methodology proposed by the first author, methodology 

that stand at the basis of this paper. 

According to the methodology [2], if the slowly varying 

component (including the trend) and the fast varying 

component (including random component) are separated, a 

better prediction for the genomic time series is obtained. In 

this paper, these two components will be named trend and 

random component. The separation might be done using a 

moving average filter. Elements of the methodology were 

presented in [3-7], together with several results. 

According to the methodology from [2], a hierarchical 

hybrid system for recognition of genomic sequence was 

designed and implemented [3-7]. We used one-step-ahead 

predictors for the genomic sequence recognition scores 

computation. These recognition scores are then used as 

inputs for a hierarchically superior decision system. The 

relevance of these scores might be affected by the 

prediction quality. It is necessary to appreciate the 

prediction performance framework according to the 
analyzed time series predictability. 

The aim of this paper is to determine the predictors that 

are most suitable to use as genomic sequence identifiers. 

The choice is made amongst linear predictors (like linear 

combiner), neuronal predictors (RBF or MLP type), and 

neuro-fuzzy predictors (Yamakawa model based). 

Hurst exponent, self-correlation function, and eta )(η  

metrics were used to appreciate the predictability of time 

series. All predictors were tested and compared for 

prediction quality using sequences from the HIV-1 genome. 

As prediction performances measures were used the 

following: mean square prediction error (MSPE), direction 

test, and Theil coefficient. 

The paper is structured as follows: the next section is 

devoted to the description of the methodology. The third 

section briefly presents the predicting systems used. In the 

fourth section, we show several simulation results. In the 

last section, conclusions are outlined. 

II. METHODOLOGY 

A. Identifiers for genomic sequences 

The aim of the design of the identifiers is to obtain tools 

able to scan genomic sequences and to identify the known 

(learned) patterns. The basic methodology to identify 

genomic sequence, using one-step-ahead predictors, was 

published in [2]. An already learned sequence will give a 

small prediction error at a subsequently testing. A foreign 

sequence might be rejected due of high prediction error. To 

verify the methodology, we tested linear predictors (linear 



combiner), neuronal predictors (RBF or MLP type), and 

neuro-fuzzy predictors (Yamakawa model based). 
The class of a predictor is given by the input-output 

function or by the characteristic function of the predicting 

system. We tried several predictors, including linear 

predictors based on linear combiners, MLP predictors, RBF 

predictors, and neuro-fuzzy (NF) predictors. In case of 

adaptive linear combiner (ALC) predictors (see Fig. 1), the 

characteristic function is a linear weighted sum of the 

delayed inputs: 
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where k  represents the predictor order, 0w  is the bias, and 

jw  are the weights of the linear combiner.  

Fig.1 – One-step-ahead adaptive linear combiner based predictor 

The Del symbol represents the delay operator, which 

ensures one-iteration-delay between the samples of 

consecutive inputs. 

In case of single hidden layer perceptron, the characteristic 

function is: 

 

( )

∑
∑=

= +−

+−+−−−















 +−+

+

=

H

i
k

j
jniji

i

knknnnn

xww

ww

xxxxxf

1
1

1
11

0

0

12212

exp1

1

,,,,, K

,  (2)      

 

where k  represents  the predictor order, 0w  is the bias 

and iw  are the weights of the output neuron, 
1
0iw  and 

1
ijw  

are the bias and the weights, respectively, of the neuron i#  

from the hidden layer.  The PE blocks are processing 

elements with sigmoid activation function.   

An RBF network with Gaussian neurons in the hidden 
layer (see Fig. 3) has the characteristic function as a linear 

combination of Gauss functions: 
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where k  represents  the predictor order, 0w  is the bias, 

and jw  are the weights of the output neuron. H is the 

hidden Gauss type neurons number. Here, σ  denote the 

spreading of the Gauss type functions (all functions are 

assumed to have the same spreading) and ijc  are the 

centers. 

Fig. 2 – Architecture of a MLP based predictor 

Fig. 3 – Architecture of a RBF based predictor  
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The RBF X blocks are Gauss type RBF functions.  

In case of the neuro-fuzzy (NF) predictor (see Fig. 4), 

the architecture is a multi-fuzzy system network with inputs 

represented by the delayed samples. The fuzzy cells acting 

as multipliers of inputs are Sugeno type 0 systems, with 

Gauss input membership functions. The input-output 

function is a ratio with sums of exponentials at the 

nominator and the denominator.  
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where k  is the predictor order, N  is the input membership 

function number for each Sugeno fuzzy system, ijc are the 

centers of the Gauss type input membership function, and  

ijβ  are the output singletons i# of the fuzzy system j# . 

The spreads of the Gauss type functions are assumed again 

equal and are denoted by σ ; the weights associated to the 

output of the system j#  are denoted by jw .  

In Fig. 4, the SFS X blocks are single-input-single-

output 0-type Sugeno fuzzy systems. The input and the 

output membership functions are Gauss type and singletons 

type, respectively.  

 

 

Fig. 4 – Architecture of a neuro-fuzzy predictor [20] 

B. Predictability analysis tools 

Predictability definition 

In [8], predictability at a time in the future is defined by 
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and linear predictability by 
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where R and L are the redundancy and linear redundancy, 

and H is the entropy. Redundancy is  
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where )( iXH  is the entropy and ),...,,( 21 nXXXH  is the 

joint entropy. Linear redundancy is  
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2
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where iσ  are the eigenvalues of the correlation matrix [9]. 

In [10], the (Shannon) entropy of a variable X is defined as 
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where ( )xP  is the probability that X is in the state x , and 

PP log  is defined as 0 if 0=P . The joint entropy of 

variables nxx ,...,1  is then defined by 
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Correlation analysis 

For the time series obtained as we described above, to 

fast identify the dynamics associated with the genomic 

sequences, we made the correlation analysis. It is well 

known that the self-correlation function is a tool able to 

show that a time series is constant, periodical or random. 

For a time series { }
Nttyy

..1=
= , the correlation function 

is obtained by multiplying each ty  by τ+ty  and summing 

the result over all the data points. The average is then 

plotted as a function of lags τ . This gives a measure of 

how dependent data points are on their neighbors [11].  

The correlation time (also named coherence time or 

correlation interval) is the number of lags for that the 

correlation values are still high, the consecutive samples 

being correlated [12].  

A small correlation time is obtained for highly random 
data. White noise has no correlation, i.e., the correlation 
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function drops abruptly to zero. For highly correlated data, 

the correlation function slowly decreases.  

 

Hurst exponent 

It is known that the Hurst exponent ( H ) measures the 

fractal dimension of a data series [13]. A Hurst exponent of 

0.5 indicates no long-term memory effect; this is the case 

of the random data. If 5.0>H , we have an indication of an 

increasing presence of long-term memory effect. In this 

case, data series reverse signs less frequently than would be 

true for white noise [14]. 

If 5.0<H , the data series is called anti-persistent. 

Namely, each data value is more likely to have a negative 

correlation with preceding values. Such data series reverse 

signs more frequently than would a white noise series [14]. 

 

Eta metrics 
Introduced by Kabudan [15], the η -metrics measures 

the predictability level for the time series, using models 

based on genetic programming.  The η -metrics consists in 

outputs comparison for two systems: the first system is the 

best one-step-ahead predictor for a specified time series, 

and the second is the best predictor for the time series 

obtained by shuffling the original series.  

For a given time series { }
Nttyy

..1=
= , the squared step 

prediction error, denoted by ySSE , is: 
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where tŷ  is the predicted value of ty . 

For the shuffled time series, the prediction error is: 
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where S  is y  shuffled series. 

According to Kabudan, the evaluation is given by [15]: 
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If the y  series is totally determinist, it can be perfectly 

modeled. Then, 0=ySSE , and 11 =η . If the y  series is 

totally unpredictable, the shuffling has no influence for 

prediction, Sy SSESSE = , and 01 =η . 

According to Duan [16], the η -metrics has two 

disadvantages. The first is that the value given by the 

metrics depends on the time series length. The second 

disadvantage consists in the small resolution of the metrics, 

i.e. a great number of series (financial) may have η  values 

belonging to a small interval, namely (0.9, 1) versus (0,1). 

If NSSEMSE xx /= , then the ratio Sy SSEMSE /  is 

identical to the ratio Sy SSESSE / . Therefore, one can use 

the mean square error for the 1η  metrics evaluation. 

An improvement of the 1η  metrics, proposed by Duan 

[16], is  
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We propose two improved variants for the η -metrics: 
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The proposed metrics improves the advantages of 

previous metrics by tacking into account of MSE obtained 

at the test. A series with small testing MSE is more 

predictable than in case of high testing error.  Here, k  is a 

scaling exponent. 

C. Prediction error performances evaluation 

For the one-step-ahead prediction, a common error is the 

repetition phenomenon known as naive prediction, or trivial 

prediction. The repetition consists in output of a one-

sample delayed series versus the desired series. Namely, 

the input that is represented by the current sample is 

transmitted unchanged to the output. The repetition is a 

local optimum for the training of neuronal systems.   

 

Prediction error 

The commonly used measure for the prediction 

performances is the mean square prediction error (MSPE). 

Other prediction error measures are the normalized mean 

square prediction error (NMSPE) and the root mean square 

prediction error (RMSPE). 

 

Theil coefficient 

The Theil coefficient compares the RMSE error for the 

obtained prediction and for the naive prediction. If the 

current value of a time series is ty , then the naive 

prediction would be tt yy =′+1 . If we have a desired series 

{ }Ntty ,1, =  and a predicted series { }Ntty ,1, =′ , then the Theil 

coefficient is defined as ([17] citing [18]): 
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For the Theil coefficient the following interpretations 

are possible:  

- if 0=T , then the prediction error is zero and the 

time series was perfectly predicted.  

- if 1=T , then the prediction error is equal to the 

naive prediction and the predictor is the same with 

the naive predictor. 

- if 1<T , then the obtained prediction is better than 

the naive prediction, the prediction quality 

increasing when T goes to zero. 

- if 1>T , then the obtained prediction is weaker than 
the naive prediction, the prediction quality 

decreasing when T goes to infinity. 

 

Direction test 

To compare the prediction of direction changes the so-

called “direction” test is used. A variant is to compute the 

number of correctly predicted changes, namely the number 

of positive products tt yy ′⋅ , (with the same notations as in 

the previous paragraph).  

Given a time series { }Ntty ,1, =  and the predicted time 

series { }Ntty ,1, =′ , compute the directional prediction hit rate 

H  [19] as 
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The same computation is made for the naive prediction, 

obtaining NH , 
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The normalized hit rate is 
NH

H
H =0  [19]. A value 

10 <H  indicates a real predictive power.  

III. SYSTEMS USED FOR THE PREDICTION 

A. Identifiers based on a neuro-fuzzy predictor  

The neuro-fuzzy predictor we used is based on the 

Yamakawa neuronal model (see [20]). The model has a 

transversal filter with external delays, with cells 

represented by Sugeno fuzzy systems instead of weights. 

Each fuzzy cell consists in a type-0 Sugeno fuzzy system, 

with single input and single output. The fuzzy systems have 

seven Gauss-type input membership functions. The fuzzy 

systems act as multipliers of the delayed samples of the 

inputs, { }11 ,,, −−− Mnnn xxx K . By adaptation, the parameters 

of the systems are modified to obtain at the output a better 

approximation of the sample 1ˆ +nx . We used variants with 

different number of inputs (3-7,10,11). Details about the 

methodology were presented in [7]. The predictor training 

involves the adaptation of two sets of parameters: the 

output singletons iβ  of the Sugeno fuzzy systems, and the 

weights iw . 

B. Identifiers based on neuronal predictors 

For the neuronal identifies, two models were tested: 

RBF and MLP. The variant that involves RBF includes, in 

the neurons with radial basis functions layer, a number 
between 1 and 30 Gauss type neurons. The number of 

inputs is between 1 and 30, respectively, and the number of 

outputs is 1. The MLP network has one hidden layer, with 

5 or 10 neurons with hyperbolic tangent activation 

function. Similarly, the number of inputs is between 1 and 

30, respectively, and there is a single output. 

C. Identifiers based on linear predictors 

The linear combiner has the number of inputs between 1 

and 30, and a single output. 

IV. RESULTS 

A. Predictability analysis 

For the distance series between the A bases from the 

ENV gene, HIV-1 virus [21], we performed two analyses: 

- the correlation analysis for the original time series; 

- the correlation analysis for the trend and random 

component. 

In the upper panel of Fig. 5, the original time series is 

shown, after normalization to the [-1,1] interval. In the 

lower panel, the graphic of the self-correlation function is 

shown. A strong continuous component is observed.  

 

Fig. 5 – The original time series after normalization (top). The self-
correlation function (down) 

A causal MA filter having the equation  
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splits the two components, trend and random, as it is shown 

in Fig. 6 and Fig. 7. 

The continuous component from the original time series 

is found in the trend component, as it is shown on the self-

correlation function graphics in Fig. 1 and 2. 

For the random component, the self-correlation function 

graphics (see Fig. 7, down) shows very small values, under 

0.03, confirming the opinion of non-existence of a 

periodical component [2]. 

 

Fig. 6 - The trend component (top).  
The self-correlation function (down) 

 
Fig. 7 - The random component (top).  
The self-correlation function (down) 

In Table 1, the values of the Hurst exponent are 

presented for an A-ENV original series and for its 
components. 

 
Table 1. The Hurst exponent for the distance series  

between A bases 

Hurst 
Exponent 

Original series Trend 
component 

Random 
component 

ENV A 0.0015 0.150 -0.0139 

 
The computed Hurst exponent is less than 0.5 for the 

original series and its components. Thus, the series have 

negative self-correlation.   
The measures of the predictability using eta metrics are 

summarized in Tables 2 and 3. 
 

Table 2. Genomic series predictability measuring using eta metrics 
for the random component 

Random component, ENV gene, A basis 

System MSEy MSEs 
1η  2η  31η  

k=10 

32η  

k=10 

ALC 0.0271 0.0419 0.3523 0.1952 0.2567 0.1422 

RBF 0.0233 0.0416 0.4407 0.2521 0.3382 0.1935 

MLP 0.0238 0.0371 0.3583 0.1989 0.2729 0.1515 

NF 0.0279 0.0423 0.3420 0.1888 0.2467 0.1362 

 
Table 3. Genomic series predictability measuring using eta metrics 

for the trend component 

Trend component, ENV gene, A basis  

System MSEy MSEs 
1η  2η  31η  

k=10 

32η  

k=10 

ALC 0.0075 0.0192 0.6097 0.3752 0.5641 0.3472 

RBF 0.0086 0.0188 0.5438 0.3246 0.4973 0.2968 

MLP 0.0077 0.0190 0.5973 0.3654 0.5515 0.3374 

NF 0.0115 0.0193 0.4039 0.2279 0.3574 0.2017 

 

As we expected, the predictability of the trend 

component is better than the predictability of the random 

component. Indeed, all metrics (labeled 1η , 2η , 31η , and  

32η  in Tables 2 and 3) computed for the all predictors 

(ALC, RBF, MLP, and NF based) indicate greater values 

for the trend component than for the random component. 

For the scaling exponent k , a value of 10 was chosen 

because this values performed better than 1 and 100. We 

have an indication that the 31η  and 32η  metrics perform 

better than 1η  and 2η  metrics, because the proposed 

metrics increase the resolution of 31η  and 32η  metrics for 

the distances between bases series. This indication must be 

through tested for another time series type, like financial 

data or biological data, also. The metrics improved is 

obtained at the down of the measuring scale: all 31η  and 

32η  metrics have values less than values for the 1η  and 

2η  metrics, respectively. 

B. Prediction performances 

A comparison between the performances of different 

types of predictors is presented below. 



As Tables 2 and 3 show, the best predictor for the 

random component is a MLP with 0.0371 MSE for the test 

period. For the trend component, the best performance is 

obtained for a RBF, with MSE about 0.0188, followed by a 

MLP with MSE about 0.0190. 

The performances of different predictors with different 

order are presented in the figures 8 to 11. The Test MSE 

series are plotted on the second (right) axis. 

The performances of the predictors must be interpreted 

by cumulating of the indication given by the MSE on the 

TEST period, direction test, and Theil coefficient. 
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Fig. 8a – The prediction performances for different Adaptive Linear 

Combiner predictor orders; ENV gene, A series, fast varying 
component 

In Fig. 8a, for ALC predictors trained on the fast varying 

component of A series from ENV gene, on the MSE series 

for the test period, a local minimum can be seen at the 

order 14. The direction test and the Theil coefficient 

indicate average values for the predictor with order 14. 

Another minimum can be seen at order 1, but this case can 
not be considered an optimum predictor because a real 

prediction can not be made using only the current sample.  
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Fig. 8b - The prediction performances for different Adaptive Linear 

Combiner predictor orders; ENV gene, A series, slow varying 
component 

In Fig. 8b, the case of the ALC predictors trained on the 

trend component of A series from ENV gene is considered. 

The optimum predictor might have order 16, due to global 

minimum observed at this order. The high value of the 

direction test throws susceptibility for this optimum.  
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Fig. 9a - The prediction performances for different RBF predictor 
orders; ENV gene, A series, fast varying component 

For the RBF predictors, in case of the fast component, 

the optimum is given at the order 3, where the global 

minimum is present on the test MSE series. Even if the 

direction test series shows a local maximum, this value is 

less than 1, as shown in Fig. 9a.  
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Fig. 9b - The prediction performances for different RBF predictor 

orders; ENV gene, A series, slow varying component 

In Fig. 9b the case of RBF predictors for the trend 

components is presented. The optimum predictor has order 

10, indicated by the global optimum existing on the test 
MSE series. The Theil coefficient series indicates a global 

minimum, too.  
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Fig. 10a - The prediction performances for different MLP predictor 
orders; ENV gene, A series, slow varying component 

In Fig. 10a, the case of MLP predictors trained on the 

trend component of A series from ENV gene is shown. The 
optimum is given for order 3, but several predictors have, 

like predictor with orders 5, 7, 9, and 10 have similar 

performances from the test MSE, direction test, and Theil 

coefficient point of view. The parsimony principle indicates 

the 3-order predictor as optimum. Notice that several 

predictors, corresponding to the orders 2, 6, 21, and 28, are 

not well trained.  Also, the predictors by orders 11, 25, and 

30 are not well trained and they are removed from the 

graphics.  
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Fig. 10b - The prediction performances for different MLP predictor 
orders; ENV gene, A series, fast varying component 

In Fig. 10b, the optimum MLP-type predictor, for the 

fast varying component, has order 3, due to the global 

minimum from the test MSE series. Several predictors, like 
predictors with orders 11, 18, 29, and 30, are not well 

trained and they are removed from the plot from Fig. 10b.  
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Fig. 11a - The prediction performances for different NF predictor 
orders; ENV gene, A series, fast varying component 

In Fig. 11a, the case of NF predictors for the fast varying 

component is shown. The optimum predictor has order 3 

and, by increasing of the predictor order, the performances 

do not improve. 
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Fig. 11b - The prediction performances for different PNF predictor 
orders; ENV gene, A series, slow varying component 

In Fig. 11b, the case of NF predictors for the slow 

varying component is illustrated. The optimum predictor 

has order 7. The predictors with order 8 and 9 are not well 

trained. 

C. Testing the recognition power 

To test the recognizing ability of the identifiers, we used 

a set of genomic sequence either HIV-1 (ENV, POL, REV, 

GAG, LTR, NEF, TAT, VIF, VPR, VPU-VPX) or other 

entity [22] (2L526 - Hepatitis C, CP – Mosaic Virus, GltP - 

Escherichia Coli, ORF3 - Hepatitis E, PyrB - Salmonella 

Enterica). The obtained results are presented in the Table 4. 
Table 4 summarizes the recognition scores obtained by 

testing the MLP predictor on a set of genomic sequences 

with the parameters resulted from the training on the ENV 

gene, A series. Notice that the MSE obtained at training on 

the ENV gene is greater than all MSE obtained at testing on 

all foreign sequences.  
In Table 5, we present the results obtained by training 

several predictors on the ENV gene. Recall that the ENV 

gene has been coded, according to the methodology, in four 
series, one for each of the bases A, C, G, T.   

 
Table 4. The genomic sequences recognizing using MLP 

   TEST: MSE TEST: MSE TEST: MSE 

  GENE   RANDOM   TREND  CUMULATED  



1 ENV 0.0195 0.005 0.041 

2 POL 0.0584 0.0171 0.1243 

3 REV 0.0728 0.024 0.1548 

4 GAG 0.0704 0.0183 0.1434 

5 LTR 0.0615 0.0196 0.1368 

6 NEF 0.0459 0.0122 0.0926 

7 TAT 0.1226 0.0308 0.2438 

8 VIF 0.0761 0.0233 0.167 

9 VPR 0.1279 0.0342 0.2598 

10 VPU-VPX 0.0609 0.0182 0.1378 

11 2L526 HC 0.0848 0.0244 0.1839 

12 CP Mosaic 0.0621 0.0178 0.1294 

13 GltP E Coli 0.0286 0.0083 0.0612 

14 ORF3 HE 0.0683 0.0161 0.1307 

15 PyrB Salmonella 0.1234 0.034 0.2553 

 
Table 5. Comparison of recognition ability for genomic sequences 

in cases of ALC, RBF, and MLP 

  ALC RBF MLP 

A 0 0 0 

C 1 1 0 

G 5 3 1 

Random 

T 5 4 2 

A 0 0 0 

C 1 1 0 

G 5 5 0 

Trend 

T 5 5 3 

A 0 0 0 

C 1 1 0 

G 5 4 0 

Cumulated 

T 5 4 2 

 

In Table 5 are counted the fails (false-positive cases) for 

the rejection of foreign sequences. The best results are 

obtained using a MLP predictor. Notice that the base T 

series generate the weakest indications for all predictors. 

Surprisingly, the NF predictors do not provide good results, 

despite their complexity. We have no explanation for this 

experimental finding. 

V. CONCLUSIONS 

The main goal of this paper was to determine suitable 

predictors for genomic sequence identifiers. We compared 

adaptive linear combiners, neuronal predictors (RBF or 

MLP), and neuro-fuzzy predictors. 

Hurst exponent, self-correlation function, and eta 

metrics were used to appreciate the predictability of time 

series.  

All predictors were tested and compared for prediction 

quality using sequences from HIV-1 genome. As prediction 

performance measures, we used the mean square prediction 
error (MSPE), direction test, and Theil coefficient. 

The continuous component from the original time series 

is found in the trend component. For the random 

component, the self-correlation function graphics shown 

very small values, under 0.03, confirming the opinion of 

non-existence of a periodical component. 

The computed Hurst exponent is less than 0.5 for al time 

series. In that case, we have series with negative self-

correlation. 

As we expected, the predictability of the trend 

component is better than the predictability of the random 

component for all metrics and for all prediction systems 

used. 

The best predictor for the random component was a 

MLP with 0.0371 MSE for the test period. For the trend 

component, the maximum performance was obtained for a 

RBF, with MSE about 0.0188, followed by a MLP with 

MSE about 0.0190. 

To test the recognizing ability of the identifiers, we used 

a set of genomic sequence either HIV or other entity. The 

MSE obtained at training on the ENV gene was greater 
than all MSE obtained at testing on all foreign sequences 

Several predictors were trained on the ENV gene, coded, 

according to the methodology, in four series, one for each 

of bases A, C, G, T. We counted the fails (false-positive 

cases) for the reject of foreign sequences. The best results 

are obtained using MLP. The bases T series generate the 

weakest indications. 

Open questions remain: 

Is the same level of predictability a good way to classify 

the “complexity” of sequences? 

If two sequences have good prediction scores by using 
the same predictor, does this mean that they have some 

common “hidden characteristics”? If yes, what are these 

common characteristics? 

We are not able to satisfactory answer now these 

questions and further thorough studies on several genetic 

sequences have to be performed. Also, the results presented 

in this paper have to be contrasted with results obtained 

with other prediction methods. 
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