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Abstract — In previous papers, we used one-step-ahead
predictors for the genomic sequence recognition scores
computation. The genomic sequences are coded as distances
between successive bases. The recognition scores were then used
as inputs for a hierarchical decision system. The relevance of
these scores might be affected by the prediction quality. It is
necessary to appreciate the prediction performance in a
framework based on the analyzed time series predictability. The
aim of this paper is to determine which predictors are most
suitable for genomic sequence identification. We analyze linear
predictors (like linear combiner), neuronal predictors (RBF or
MLP type), and neuro-fuzzy predictors (Yamakawa inodei
based). Several methods to appreciate the predictability of time
series are used, like Hurst exponent, self-correlation/finctio,
and eta metric. All predictors were tested and coripased for
prediction quality using sequences from HIV-1 ¢endgnie/ The
mean square prediction error (MSPE), direction/test, and Theil
coefficient were used as prediction performance measures. The
prediction results obtained with the predictérs are contrasted
and discussed.

Keywords — Distance series, genomic ;sequences, predictability;
prediction performances, recognitioncores.

I INTRODUCTION

Genomic sequences /ate \represented as sequences of
letters (A, C, G or T/ U); that are the initials/of nitric bases
from ADN / ARN stfuctures (Adenine, Cytosing,/Guanine,
Thymine / Uracil)/ Thig literal representationis improper
for the computing systems used for/thé (gefiomic sequence
analysis. Numérous_ authors (see/ [1]) proposed different
methods for representing the mitric bases or nucleotide
sequences./ The original representation used in this paper,
proposedin [2],/ consists in the\,coding of genomic
sequences by for time serigsy one four each basis type. Each
serie§ \contains the distances between successive
occurtences of the corpésponding basis. Details about above
mentioned /coding can be found in [2], together with the
miethodology proposed \by\the first author, methodology
that stand at the basjs of\this paper.

Acgcording to the methodology [2], if the slowly varying
component (including the trend) and the fast varying
¢omponent (including random component) are separated, a
better prediction for the genomic time series is obtained. In
this paper, these two components will be named trend and

random cemponeint,/ The separation might be done using a
moving dverage-filter. Elements of the methodology were
presented\in{3-7], togethet with several results.

Atcording to the methodolggy from [2], a hierarchical
hybrid system for recognition /of genomic sequence was
designed and implemented [3-7]. We used one-step-ahead
pradictors for the genomic sequence recognition scores
computation. Thege tecognition scores are then used as
inputs for a hiergychically superior decision system. The
relevance of Afese scores might be affected by the
prediction quality, It is necessary to appreciate the
prediction petfoymance framework according to the
analyzed/ime series predictability.

The @i of this paper is to determine the predictors that
are most-suitable to use as genomic sequence identifiers.
The choice is made amongst linear predictors (like linear
combiier), neuronal predictors (RBF or MLP type), and
neuro-fuzzy predictors (Yamakawa model based).

Hurst exponent, self-correlation function, and eta (1)

mietrics were used to appreciate the predictability of time
series. All predictors were tested and compared for
prediction quality using sequences from the HIV-1 genome.
As prediction performances measures were used the
following: mean square prediction error (MSPE), direction
test, and Theil coefficient.

The paper is structured as follows: the next section is
devoted to the description of the methodology. The third
section briefly presents the predicting systems used. In the
fourth section, we show several simulation results. In the
last section, conclusions are outlined.

II. METHODOLOGY

A. Identifiers for genomic sequences

The aim of the design of the identifiers is to obtain tools
able to scan genomic sequences and to identify the known
(learned) patterns. The basic methodology to identify
genomic sequence, using one-step-ahead predictors, was
published in [2]. An already learned sequence will give a
small prediction error at a subsequently testing. A foreign
sequence might be rejected due of high prediction error. To
verify the methodology, we tested linear predictors (linear



combiner), neuronal predictors (RBF or MLP type), and
neuro-fuzzy predictors (Yamakawa model based).

The class of a predictor is given by the input-output
function or by the characteristic function of the predicting
system. We tried several predictors, including linear
predictors based on linear combiners, MLP predictors, RBF
predictors, and neuro-fuzzy (NF) predictors. In case of
adaptive linear combiner (ALC) predictors (see Fig. 1), the
characteristic function is a linear weighted sum of the
delayed inputs:

fl (xn s Xn—15Xn—25e s X425 Xp—k+1 ) =
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where k represents the predictor order, W, is the bias, and

w; are the weights of the linear combiner.
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Fig.1 — One-step-ahead adaptive linear combitict.based predictor

The Del symbol represents the delay wpepator, which
ensures one-iteration-delay between the ¥ sampless of
consecutive inputs.

In case of single hidden layer pérceptron, the charactefistic
function is:

f2 ('xn s X1 X255 Xk 25 Xn_k+1 ) =

where k represenis) the predictof orden, w, is the bias
and w; aré the weights of the output neuron, w,-l0 and W,-lj

are the Bias\and the weights, respectively, of the neuron #i
from_the\hidden layer.{ The PE blocks are processing
elernignts with sigmoid/ctivation function.

An RBF network with Gaussian neurons in the hidden
layer\(st¢ Fig. 3) has the characteristic function as a linear
gornbination of Gauss functions:

f2 (xn s Xn—10 X255 Xp—k+2> Xp—+1 ) =

H k ( \a / | 3)
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where k represents the predictor/order. W, is the bias,

and w; are the weights of the-output vieuron. H is the

hidden Gauss type neurons @uymber. Here, ¢ depote\the
spreading of the Gauss type flnctions (all funciions dre
assumed to have the saiie spreading) and ) (ar¢ the

centers.
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Fig. 2 — Architecture of a MLP based predictor

Fig. 3 — Architecture of a RBF based predictor



The RBF X blocks are Gauss type RBF functions.

In case of the neuro-fuzzy (NF) predictor (see Fig. 4),
the architecture is a multi-fuzzy system network with inputs
represented by the delayed samples. The fuzzy cells acting
as multipliers of inputs are Sugeno type 0 systems, with
Gauss input membership functions. The input-output
function is a ratio with sums of exponentials at the
nominator and the denominator.

f3 (xn s X1 Xp—2s s X125 Xn—k+1 ) =
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where k is the predictor order, N is the input membership
function number for each Sugeno fuzzy system, c;; are the

centers of the Gauss type input membership function, and
B; are the output singletons #:i of the fuzzy system # ;.

The spreads of the Gauss type functions are assumed again
equal and are denoted by o ; the weights associated to the

output of the system # j are denoted by w;.

In Fig. 4, the SFS X blocks are single-input-single-
output O-type Sugeno fuzzy systems. The input and the
output membership functions are Gauss type and singletons
type, respectively.

Fig. 4 < Architecture of a netro-fuzzy predictor [20]

B. Prédiciability analysis'tools.

Prediciability defifition
In 87, predictability at\a time in the future is defined by

R(x(1), x(1 + 1))

5
H(x(1)) ©
and linear predictability by
L(x(t), x(t +71)) ©
H(x(1))

where R and L are the redundaycy jand linear redundancy,
and H is the entropy. Redundancy 1%

R(X;. Xy X,) =

n 4 ‘ . (7)
D H(X)-H(X Xy X,)

k=1

where H(X;) iéthe entropy and H(X,,X,:....X,,) is the
joint entropy. Linear redundancy is

‘, ,V 1
L(Xl,)iz,..‘f){”)Z—EZIOgE{S;, (8)

where &, are the eigenyalues of the correlation matrix [9].
I f10], the (Shannon)-enfropy of a variable X is defined as

H(X) ==Y Ple)iog, [(P(x))] bits, )

where P(x) is4hé probability that X is in the state x , and

Plog P| is/d¢fined as 0 if P=0. The joint entropy of

varigbles-%,..., X, is then defined by

AX,,..X,)=

- ZZ P(xl,...,x”)logz[P(xl,...,x” )]
X1 *n

(10)

Correlation analysis

For the time series obtained as we described above, to
fast identify the dynamics associated with the genomic
sequences, we made the correlation analysis. It is well
known that the self-correlation function is a tool able to
show that a time series is constant, periodical or random.

For a time series y = {yt }t the correlation function

=L.N?
is obtained by multiplying each y, by y,.. and summing

the result over all the data points. The average is then
plotted as a function of lags tT. This gives a measure of
how dependent data points are on their neighbors [11].

The correlation time (also named coherence time or
correlation interval) is the number of lags for that the
correlation values are still high, the consecutive samples
being correlated [12].

A small correlation time is obtained for highly random
data. White noise has no correlation, i.e., the correlation



function drops abruptly to zero. For highly correlated data,
the correlation function slowly decreases.

Hurst exponent
It is known that the Hurst exponent ( H ) measures the

fractal dimension of a data series [13]. A Hurst exponent of
0.5 indicates no long-term memory effect; this is the case
of the random data. If H > 0.5, we have an indication of an
increasing presence of long-term memory effect. In this
case, data series reverse signs less frequently than would be
true for white noise [14].

If H<O0.5, the data series is called anti-persistent.
Namely, each data value is more likely to have a negative
correlation with preceding values. Such data series reverse
signs more frequently than would a white noise series [14].

Eta metrics
Introduced by Kabudan [15], the m-metrics measures

the predictability level for the time series, using models
based on genetic programming. The 1) -metrics consists in

outputs comparison for two systems: the first system is the
best one-step-ahead predictor for a specified time series,
and the second is the best predictor for the time series
obtained by shuffling the original series.

For a given time series y :{yt }t the squared step

=I.N*
prediction error, denoted by SSE, is:

N 2
SSE, = (vi=3.) (11)
where 3, is the predicted value of y, .
For the shuffled time series, the prediction error is:
£ =" [5,-5,) 2
SS S_thl S, -S.), (12)

where S is y shuffled series.
According to Kabudan, the evaluation is given by [15]:

SSE,
- (13)
SSEs

n =1

If the y series is totally determinist, it can be petfectiy
modeled. Then, SSEy = and‘n, =1. If the y scries is
totally unpredictable, thé shuffling has ng mfldgnoe for
prediction, SSE, = SSEj .|and 3} =0.

According to PPuan [16], the mwheirics has two

disadvantages. The. first\is that the value given by the
metrics depend$ on/ the time series, length. The second
disadvantage ¢onsists in the small regolution of the metrics,
i.e. a great number of series (fiiancial) may have n values
belonging toa small interval/namely (0.9, 1) versus (0,1).

If MSE,=SSE./N, then the ratio MSE},/SSES is
identical to the ratio SSEy / SSE . Therefore, one can use

the mean square error for the 1, metrics evaluatior,

An improvement of the 1, metrics, propoged by\Dian
[16], is

SSE,
2 (14)
SSEg

n=1-
We propose two improved varianis forthe 1 -metrics;

N3 = (1—10" -MSEy)(! X f. i (15)

g

N = (1-10% - psE, ) [V - (16)

SSEq

iy

The proposed ‘metrics improves\ (h¢ advantages of
previous mettics Dy '\tacking into aceount of MSE obtained
at the tgst. MA \serles with small testing MSE is more
predictabi¢ thian in case of high testing error. Here, k is a
scaling expongnt.

C. Prediction error peypformarices evaluation

Por the one-step-alicad prediction, a common error is the
repetition phenonienth known as naive prediction, or trivial
prediction. Thel repgsition consists in output of a one-
sample delayedh sgries versus the desired series. Namely,
the input fhat/is represented by the current sample is
transmitted unclianged to the output. The repetition is a
local optimus for the training of neuronal systems.

Prediction error

¢ | commonly used measure for the prediction
perfofmances is the mean square prediction error (MSPE).
Other prediction error measures are the normalized mean
square prediction error (NMSPE) and the root mean square
prediction error (RMSPE).

Theil coefficient

The Theil coefficient compares the RMSE error for the
obtained prediction and for the naive prediction. If the
current value of a time series is y,, then the naive

prediction would be y/,; =y, . If we have a desired series
{ Vi, N} and a predicted series { Vi =N J", then the Theil
coefficient is defined as ([17] citing [18]):

T = \/JithN_l(y,—y;)z |
\/111 > -yl)

an



For the Theil coefficient the following interpretations

are possible:

- if T=0, then the prediction error is zero and the
time series was perfectly predicted.

- if T =1, then the prediction error is equal to the
naive prediction and the predictor is the same with
the naive predictor.

- if T <1, then the obtained prediction is better than
the naive prediction, the prediction quality
increasing when 7T goes to zero.

- if T >1, then the obtained prediction is weaker than
the naive prediction, the prediction quality
decreasing when T goes to infinity.

Direction test

To compare the prediction of direction changes the so-
called “direction” test is used. A variant is to compute the
number of correctly predicted changes, namely the number
of positive products y, -y, (with the same notations as in
the previous paragraph).

Given a time series J[ Vr.e=1, N} and the predicted time

series J[ Vii=LN J", compute the directional prediction hit rate
H [19] as

_Hrly -y >01=1N}|
Hely, -y #0,t=1LN}|

(18)

The same computation is made for the naive prediction,
obtaining H

H. = |{t|yt'yt,1>0,t=1,N}|
Y ety v 200 =1LN Y

A9)

The normalized hit rate is H,, :H— [19]. A \value
N

H, <1 indicates a real predictive power.

1. SYSTEMS USED FOR THE PREDICTION

A. Identifiers based on a neuro-fuzzy predictor

The neuro-fuzzy predictor/we used/is based on-the
Yamakawa neuronal model {se¢e’ [20]). The modgl has) a
transversal filter with sexternal delays, / with Zc€lls
represented by Sugeno furzy sysi¢ms instedd of weights.
Each fuzzy cell consistsin altype-0 Sugero fuzzy system,
with single input and singic-oupput. The fuzzy systems have
seven Gauss-type ixiput menibership functions. The fuzzy
systems act as multipliers of the delayed samples of the
inputs, {x,,%x, .-, x/y . By aduptation, the parameters
of the systems are modified to obtain at-the output a better
approximation of the sample &,.). We used variants with
different number of inputs/(3-7,10y11). Details about the

methodology were presented in [7]. The predictor training
involves the adaptation of two sets of parameters: the
output singletons B; of the Sugeno fuzzy systems, and the

weights w; .
B. Identifiers based on neuronal predictors

For the neuronal identifies, two models, were’ g€sted:
RBF and MLP. The variant that involves REF includes, in
the neurons with radial basis functions -layer, \aVnumber
between 1 and 30 Gauss type neurors. The pumber of
inputs is between 1 and 30, respectively And the number of
outputs is 1. The MLP network hag one hidden layer, with
5 or 10 neurons with hyperbolic \tasigent activation
function. Similarly, the number/of fnputs‘is between I and
30, respectively, and there is a:singi¢ ouiput.

C. Identifiers based on linéar predictors

The linear combingi has the number of inputs between 1
and 30, and a single Gufput.

IV, RESULTS

A. Predictability~analysis

For-the distance series between the A bases from the
ENY geney HIV-1 virus [24 I/ weperformed two analyses:

- \ the correlation anallysjs for the original time series;

s the correlation_anaiysis for the trend and random

gomponent.

Iri\the upper panel of Fig. 5, the original time series is
shown, after normalization to the [-1,1] interval. In the
lower panel, the gidphic of the self-correlation function is
shown. A strong continuous component is observed.

Criginal Series - normalized values
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Fig. 5 — The original time series after normalization (top). The self-
correlation function (down)

A causal MA filter having the equation



y[n] = %(x[n]+ x[n - l]+ x[n - 2] )

(20)
splits the two components, trend and random, as it is shown
in Fig. 6 and Fig. 7.

The continuous component from the original time series
is found in the trend component, as it is shown on the self-
correlation function graphics in Fig. 1 and 2.

For the random component, the self-correlation function
graphics (see Fig. 7, down) shows very small values, under
0.03, confirming the opinion of non-existence of a
periodical component [2].

Trend Companent
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Fig. 6 - The trend component (top).
The self-correlation function (down)
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Fig. 7 - The' random component (top).
The self‘correlation function (cown)
In Table 1, the \walues of the/ Hurst exponent are

presented for /an A-EXV origifal\ seéries and for its
components.

Table 1. The Hurst exponent for the distance series
between A bases

Hurst Original series Trend Random
Exponent component component
ENV A 0.0015 0.150 -0.0139

The computed Hurst exponent is less than 0.5/for the
original series and its components. Thus, the series\have
negative self-correlation.

The measures of the predictability using eta mstricy are
summarized in Tables 2 and 3.

Table 2. Genomic series predictability measuting uising eta metrics
for the random compopant

Random component, ENV gene/ A basis
System | MSEy [ MSEs m n4 N3 N%
k=10 k=10
ALC | 0.0271 | 0.0419 | 03522\ 0.1652 | 0.2567 (#1422
RBF | 0.0233 | 0.0416 | 0w407 | 0.2521 | 0.3382%} 0:935
MLP | 0.0238 | 0.0371/} 0:3583 }/0.1989 | 0.2729 | 0.i515
NF 0.0279 | 0.0423\ | 023420 | 0.1888,| 0.2467 | 0.1362

Table 3. Genomic sefies predictability measuring using eta metrics
for\the trend component

Trendcomponent, ENV géney A basis
M .
System | MSEy WISEs uf Uik ufy N1

k=10 k=10

ALQ ~0.0075 | 0.0192 | 0,6097 /4 0.3752 | 0.5641 | 0.3472

RBE | 0)0086 | 0.0188 | (.5438 4 0.3246 [ 0.4973 [ 0.2968

MLP\ | 6,0077 | 0.019010:5873 | 0.3654 | 0.5515 | 0.3374

NF | 0.0115 | 0.0193/1 4039 [ 0.2279 | 0.3574 | 0.2017

Ag we expetted;/ the predictability of the trend

component is heti¢r ilian the predictability of the random
somponent. Indeed, dll metrics (labeled n;, N, ., N3, , and

N3, in Tables 2 and 3) computed for the all predictors
(ALC, RB¥, MLP, and NF based) indicate greater values
for the/trend /component than for the random component.
For _the\scaiing exponent &, a value of 10 was chosen
because\this values performed better than 1 and 100. We
have ar indication that the m;; and My, metrics perform
better than mM; and m, metrics, because the proposed
metrics increase the resolution of M3; and M3, metrics for

the distances between bases series. This indication must be
through tested for another time series type, like financial
data or biological data, also. The metrics improved is
obtained at the down of the measuring scale: all 15, and

N3, metrics have values less than values for the m; and

M, metrics, respectively.

B. Prediction performances

A comparison between the performances of different
types of predictors is presented below.



As Tables 2 and 3 show, the best predictor for the
random component is a MLP with 0.0371 MSE for the test
period. For the trend component, the best performance is
obtained for a RBF, with MSE about 0.0188, followed by a
MLP with MSE about 0.0190.

The performances of different predictors with different
order are presented in the figures 8 to 11. The Test MSE
series are plotted on the second (right) axis.

The performances of the predictors must be interpreted
by cumulating of the indication given by the MSE on the
TEST period, direction test, and Theil coefficient.

ALC performances, ENV gene, A series,
fast component
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08 L oge |~ TainmsE
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0 $99000000000000000000000000009 ()
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Fig. 8a — The prediction performances for different Adaptive Linear
Combiner predictor orders; ENV gene, A series, fast varying
component

In Fig. 8a, for ALC predictors trained on the fast varying
component of A series from ENV gene, on the MSE series
for the test period, a local minimum can be seen at the
order 14. The direction test and the Theil coefficient
indicate average values for the predictor with order 14.
Another minimum can be seen at order 1, but this case can
not be considered an optimum predictor because a real
prediction can not be made using only the current sample.

minimum observed at this order. The high value of the
direction test throws susceptibility for this optimum.

RBF performances, ENV gene, A series,

fast component
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Fig. 9a - The prediction performances for/different/RBF predictof
orders; ENV gene, A series, fast yarying coriiponent

For the RBF predictors, in ¢ése\of the fast componéerit,
the optimum is given at the( otder\3, where the global
minimum is present on thestest MSE series. Even\if the
direction test series shows(alocab maximum, this value is
less than 1, as shown in Fig! 9a.

RBF perforrnarces, ENV gene, A series,
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Fig. 8b - The prediction performances for different Adaptive Kinear
Combiner predictor orders; ENV gene, A series, slow/arying
comgonent

In Fig. 8b, the case of/the ALC predictors trained on the
trend component of A geries from ENV gene is\considered.
The optimum predictor \ight have ordef 16;-due, to global

Fig. 9b - The prgdiction performances for different RBF predictor
orders; ENV gene, A series, slow varying component

In Fig./9b\the case of RBF predictors for the trend
ts 19 presented. The optimum predictor has order
10, indicited by the global optimum existing on the test
MSE <eries. The Theil coefficient series indicates a global
miniiui, too.

MLP performances, ENV gene, A series, slow
component

0.35
r 0.3
r 0.25

—e—Train MSE
02 | s Direction Test
r 0.15| —e—Theil Coef
+ 0.1 |—=—Test MSE

1 3 5 7 913 1517 19 21 23 26 28

predictor order




Fig. 10a - The prediction performances for different MLP predictor
orders; ENV gene, A series, slow varying component

In Fig. 10a, the case of MLP predictors trained on the
trend component of A series from ENV gene is shown. The
optimum is given for order 3, but several predictors have,
like predictor with orders 5, 7, 9, and 10 have similar
performances from the test MSE, direction test, and Theil
coefficient point of view. The parsimony principle indicates
the 3-order predictor as optimum. Notice that several
predictors, corresponding to the orders 2, 6, 21, and 28, are
not well trained. Also, the predictors by orders 11, 25, and
30 are not well trained and they are removed from the
graphics.

MLP performances, ENV gene, A series,
fast component
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Fig. 10b - The prediction performances for different MLP predictor
orders; ENV gene, A series, fast varying component

In Fig. 10b, the optimum MLP-type predictor, for the
fast varying component, has order 3, due to the global
minimum from the test MSE series. Several predictors, like
predictors with orders 11, 18, 29, and 30, are not well
trained and they are removed from the plot from Fig. 10b.

PNF performances, ENV gene, A series, fast
component
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Fig. 11a - The prediction performances for different Nk predictor
orders; ENV gene, A series, fast varying coffimonent

In Fig. 11a, the case of NF predi¢tors for the fast varying
component is shown. The optimun predictor has grder 3
and, by increasing of the predictor order, the performances
do not improve.

PNF performances, ENV gene, A series,
slow component
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Fig. 11b - The prediction performances for different PNt predictos
orders; ENV gene, A series, slow varying companent

In Fig. 11b, the case of NF predictors)for the slow
varying component is illustrated. The oftinium\ predictor
has order 7. The predictors with order 8 and/9/are not well
trained.

C. Testing the recognition power

To test the recognizing ability of the identifiers, we used
a set of genomic sequence either\ HIV-1 (ENV,POL, REV,
GAG, LTR, NEF, TAT,/VIF,| VPR, VPU-VPX) of pther
entity [22] (21526 - Hepatitis\C\ £P — Mosaic Virtis,/GItP -
Escherichia Coli, ORF3  Hepatitis E, PyrB - Salmonella
Enterica). The obtairediresuits are presentéd in the Table 4.

Table 4 summarizes the-recognition, scorgs obtained by
testing the MLP predictgr on a set of genaric sequences
with the parap€iess resulted from thestraining on the ENV
gene, A seri¢s/Notice that the MSt-obtained at training on
the ENV gone is greater than all MSE/gbtained at testing on
all foreign/sequenges.

In Zable’S, we present the feshlts obtained by training
several predictors on the ENV_&ene. Recall that the ENV
gene/has beegn coded, acgordirigto the methodology, in four
series, one/for each of thevases A, C, G, T.

Table 4. The gefiomic sequences recognizing using MLP

TEST: MSE | TEST: MSE | TEST: MSE

GENE RANDOM TREND | CUMULATED




1 ENV 0.0195 0.005 0.041
2 POL 0.0584 0.0171 0.1243
3 REV 0.0728 0.024 0.1548
4 GAG 0.0704 0.0183 0.1434
5 LTR 0.0615 0.0196 0.1368
6 NEF 0.0459 0.0122 0.0926
7 TAT 0.1226 0.0308 0.2438
8 VIF 0.0761 0.0233 0.167
9 VPR 0.1279 0.0342 0.2598
10 VPU-VPX 0.0609 0.0182 0.1378
11 21526 HC 0.0848 0.0244 0.1839
12 CP Mosaic 0.0621 0.0178 0.1294
13 GItP E Coli 0.0286 0.0083 0.0612
14 ORF3 HE 0.0683 0.0161 0.1307
15 | PyrB Salmonella 0.1234 0.034 0.2553

Table 5. Comparison of recognition ability for genomic sequences
in cases of ALC, RBF, and MLP

ALC RBF MLP
Random | A 0 0 0
C 1 1 0
G 5 3 1
T 5 4 2
Trend A 0 0 0
C 1 1 0
G 5 5 0
T 5 5 3
Cumulated| A 0 0 0
C 1 1 0
G 5 4 0
T 5 4 2

In Table 5 are counted the fails (false-positive cases) for
the rejection of foreign sequences. The best results are
obtained using a MLP predictor. Notice that the base T
series generate the weakest indications for all predictors.
Surprisingly, the NF predictors do not provide good results,
despite their complexity. We have no explanation for this
experimental finding.

V. CONCLUSIONS

The main goal of this paper was to determine sujtablé
predictors for genomic sequence identifiers. We comparéd
adaptive linear combiners, neuronal predictors ARBF |un
MLP), and neuro-fuzzy predictors.

Hurst exponent, self-correlation functigh. \anil > eta
metrics were used to appreciate the predictability of time
series.

All predictors were tested and compared)fcn predigtion
quality using sequences from HIV-1 genpmeé.|Ax prediction
performance measures, we used the ycan sguare prediction
error (MSPE), direction test, and Theil ¢o¢iictent.

The continuous component from the original timé series
is found in the trend coripopsnt. | For "the Tandom

component, the self-correlation function graphics shown
very small values, under 0.03, confirming the opinion of
non-existence of a periodical component.

The computed Hurst exponent is less than 0.5 for al time
series. In that case, we have series with negative self-
correlation.

As we expected, the predictability of the trend
component is better than the predictability of the random
component for all metrics and for all prediction systems
used.

The best predictor for the random component was a
MLP with 0.0371 MSE for the test period. For the trend
component, the maximum performance was obtained for a
RBF, with MSE about 0.0188, followed by a MLP with
MSE about 0.0190.

To test the recognizing ability of the identifiers, we used
a set of genomic sequence either HIV or other entity.
MSE obtained at training on the ENV gene was
than all MSE obtained at testing on all foreign séquenc

Several predictors were trained on the ENY ge
according to the methodology, in four series; ¢ ,
of bases A, C, G, T. We counted the fails (faise positive
cases) for the reject of foreign sequenges. Vhe best résultd
are obtained using MLP. The bases T/sefic: generate the
weakest indications.

Open questions remain:

Is the same level of predictability & ccod way to/classify
the “complexity” of sequenceg?

If two sequences have goGd\gradiCiion scores by wising
the same predictor, does/this\ mesn that they, have some
common “hidden characterisiics’7\ K /yes, what, are these
common characteristics?

We are not able to satisfagtory answep/iiew ) these
questions and further thorough'studies/o sexeral/'genetic
sequences have fo he/pesformed. Also/ the fiestlts presented
in this paper Ahave contrasted it} /fegults obtained
with other predistior iethods.
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