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Abstract: The prediction of the structure of the¢ zen¢s iS addressed using a new
method and tools, involving the sequence of distdnags between bases drnd neuro-fuzzy
predictors. The method is tested on the genome. of the HIV virus and thesestlts look
promising compared to other methods.

1. fntroduction

Life needs a blueprint to grganize the matter and generate functions. The set of
chromosomes includes the bBlueprirt recording of, the prganism written in the DNA.
DNA is a huge molecule/basically constitutgd cut of four chained aminic bases.
Genes are sections of the DNA ‘that serve in_the/synthesis of proteins. DNA and
consequently the genetic\sequences logks) like {...cgcaacgt. ccgectgtggtce...},
where the symbols represent’the codes ¢4h¢/aminic bases. For example, the first
section of the sequefige of the NC_@04718 SARS coronavirus, at [1] sequence
reads: {atggagagoe tigttottgg tgtcaacgag aaaacacacg tccaactcag tttgectgte ...}, with
a base count of 6034 ay/ 4128 ¢/ AS52% ¢ / 6538 t [2].

A large gffoft has been madé during the last decades to unveil the genome for
humans, some spegies of mdmmals, viruses, and bacteria. Many genome databases
exist today,\for €xample the NCBI Entrez databases, covering, beyond genome
databases, nucleotide databases/(dbEST MGC, dbGSS PopSet, dbSNP RefSeq,
dbSTS 'TRA, Nucleotide\ Trace Archive, GenBank, UniGene, HomoloGene
UniSTS); »protein  databases, structure databases, taxonomy databases, and
éxpression databases ((see [3]). As in May 2003, the whole genomes of over 1000
viruses)and over 180 microbes can be found in the Entrez databases. According to
Entrez, “All thret(main domains of life — bacteria, archaea, and eukaryota, as well
as many virgses and grganelles” are included in the database.

Becauge, of the tremendous implications, during the last decade, genomics
became both\a leading edge and a highly demanding science, asking for and
imposing advarices in many fields, including biomedical engineering and computer
scierice) Since 1990, the U.S. Human Genome Project aimed to determine all the
(apouty 30,000 genes in human DNA and the sequences of about 3 billion chemical
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base pairs that make up human DNA. Moreover, beyond storing and distributirg
this information, the project aims to develop appropriate tools for data analysis, a
task not yet fulfilled. (That project also aims to “transfer related techrolggies (o the
private sector, and [to] address the ethical, legal, and social issuesAELST)\that may
arise from the project”, according to [4]). Similar challenges facg any other similaf
project in genomics. While determining the base sequence is the obvious first stép,
analyzing the sequence is a much more work-intensive goal/and the reward for
determining the base sequences is measured in the ability tovinterpret these
sequences and use the derived information.

Determining the base sequence is only the initiagi step i using the genétic
information. Most (90%) of the genetic information: ‘does not relate to_ genes.
Finding the gene sections (about 10% of the complete base sequence), and /other
sections of interest and determining their functiog, \thut/is the piGiein they help
synthesize (‘express”) is the next step. This tagk is huge and can/net'be performed
manually. Automatically determining what regicns of the sequence represent genes
and what their functions are is named genetic prediction.

Currently, several methods are used to make predictions, including repeated
elements searching, functional signals/prediction, and dicédon statistics (see for
example the “GeneBuilder” descriptitt, [$1). Other methods proposed to analyze
and predict the structure of genesrare bas¢d on formal \grammars and syntactic
pattern recognition. The grammarg 4r¢ organism-specific,

The prediction methods rely o1 krnowledge of the\genes for a specified class;
thus, methods and results are/organiém specific. Récall-that functional proteomics
describes the proteins and/ protein/networks fhdt underlie the basic biological
processes.

Among others, esseritial tasks for the cofuputer scientist is to develop programs
able to find specific patterns in the seguefice/ and to predict a sequence. The
prediction, at the cufrent stage, is used to/help the analysis of the structure, taking
into account the huge amount of data that is to be analyzed.

The HIV vifuses have several suiblypes, which are differentiate based on the
sequences of the EN'VY) gene. The nidjor group (with 8 subtypes denoted with letters
from A to H) and/the group{O\(ouigroup) with 3 subtypes (O.1, O.2 and O.3)
constitute ¢the\HIV-A. HIV2 seyeral subtypes, denoted with letters from A to E. The
viral RNA is constituted of threevgenes, that are common to all the retroviruses,
moreovei of Specific genes>the' three typical genes are named GAG, POL, and
ENV. Fhe specific gene$ are named TAT, REV, VIF, NEF and VPX. There is a
significant genomic variability of the HIV, during the infection, and from one
subject t¢’another. The highest variability for the typical genes is seen for the ENV
[6].

The sequerice data sets used here are the primary input. We used the nucleotide
sequence framytheregion ENV from HIV-1 “B.FR.83.HXB2”, available at [7].
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2. Methodology

2.1. Coding of the sequence

In a previous paper [8], we have presented the underlying pfingiples ‘for the
system presented in this paper. Here, we detail the method used. Becanse the codes
of the genes are letters and have no numerical representatiosn,/in order to use a
numerical prediction algorithm, we have to produce a ‘franslation” from the
symbol to numbers for the sequence. The method of numerical cading is important,
as the prediction results may heavily depend on it. W¢ have first tried a\ disett
numerical representation of the bases, using the rank i thie alphabet of the
corresponding letters, with normalization: A=1/26, G= 7/26 etc. This coding
yielded very poor prediction results. Therefore, we_have\dpplied & new method,
first used by the first author in the prediction ¢of words in natural'languages [8].
Namely, we coded the sequence as a set of four sequentes, each constitiited by the
distances between successive occurrences of the basis, For example, the'sequence

{atggagagcc ttgttcttgg tgtcaacgag aaaacacacg tccdactcag tttgestgte ... }
is coded as:

A={4218,...};,C={1,6,8,...}, G={ \2,2./.. }, T={9,1,2, \J}

Then, a predictor is developed to/generate’ each of the four sequences A,C,G,
and T.

2.2.The predictor

We have used a neurotfuzzy predictor, who a8 been developed and tested, in
our group, in previoussresearches [9]. The \architecture for one step predictive
system is shown in Fig, 1!

Figii — The topology of transversal type filter with Sugeno

fuzzy system network [9]
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The Del symbol stands for the delay operator and ensures one iteration delay
between the samples delivered towards the input of the consecutive SFS1...SFS5
Sugeno systems inputs. The Sugeno fuzzy system with single input and gingle
output was chosen for the elementary cells of the network of systems. The inpats/of
the fuzzy systems are characterized by seven Gaussian type membership fiinctions,
presented in Fig. 2.
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Fig. 2 — The membership functions for the input of Sugesno fuzzy system.

These seven Gauss-type membership functions, identical/ for all Sugeno
systems, are defined by two parameters, pamely) “center” and\“sigma”, with the
following values: center € {-1.0, -0.66, -0.33, Q,0/33, 0.66, 1.0}, sigma = 0.23. For
an input x, the membership function valiigs. are:
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Although the graphics for th¢ miembership functions afe represented only for the
interval [-1, 1], the input doméin is (¢, o).

2.3. Thé equatigns for the petiro-fuzzy predictor

We denote by M/ the number of $ugeno fuzzy systems, N the number of
membership functions\for each Sugéno fuzzy system, index k = 0=M, index I=1=N,
belief, and wy—the weights. (),

If the inpfit)is x, then the output.forthe Sugeno fuzzy system # k is:
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The characteristic tugiction of the predictor is:

[ Comment: Gauss
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After straightforward computations, we obtain: !% E @
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The above equations are used in the gradient algorithm for adaptation of the
neuro-fuzzy predictor. The prediction is one-step ahead.
3. Results
3.1. Statistics

The basic statistic of the distances for the basis A is shown in Téable 1) and the
corresponding histograms are shown in Fig. 3.

Table 1
Statistical properties of the sequence of distances betwien

subsequent occurrences of the basis A, C,A5. 1.

A Basis series | C Basis series | G Basis seties\| T Basis series
Average 2.776 6.026 4.327 4.107
Spreading 2.445 6.201 4117 3.871
Mode 1 1 1 1
Median 2 4 3 3
Skewness 3.160 2.200 2.021 20418
Kurtoisis 16.902 7.103 4.639 8213
Max 24 a5 25 27
Sum 2079 2073 2077 2078
"A" series histogram T series histogram
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Fig. 3 —/Atatistics of distances for the Adenine and Tymine basis, in the use sequence

Noticesthat the statistics/of/th¢/four bases are highly asymmetric, with averages
spanning a range larger than'1:2. The distributions broadly follow the ‘“Zipf law”.
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3.2. Component decomposition

Any time series may include a slowly changing component, usually named the
trend component, an almost periodical component, usually named cyclic or
seasonal component, and a non-periodic, fast variable component, originating from
a stochastic or nonlinear dynamic process. Using a predictor for each of the
components is known to significantly enhance the prediction outcome. Therefore;
we have first decomposed the time series into the trend component y [n], the cyctic

component y [»], and the fast varying component y_[n],

ylnl=y,[n]+y [n]+ y,[n] (1Y)

The trend component is obtained by a moving average procedure:
y[n]:é(x[n—1]+ x[n]+ x[n+1]) (12)

We tested for the cyclic component by applying the self-cofrelation procedure
to the series y[n]— y,[n]; the self-correlation is well known to evidence periodigity.

Because the cyclic component has been found insignifi¢ant,\ the’ result of‘the
subtraction y[n]—y,[n] has been dealt with as a randem component. Aftef

normalization, these two series have been separately predicted using the same
number of samples for the train and test periodS. The values are{then de-
normalized, such that the results obtained from the/Awo predictions are/commpatible.
The denormalized results of the two independent predictions have been added to
obtain the original series prediction. An examplg’ of results is shownim\Fig. 4 — 7.
The average error (normalized mean square £rier/~/NMSE) in distance prediction
has been 0.513 for the A basis, 0.927 for the' T basi6.0.488 for the G basis.
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Fig. 4 — The time series\copresponding to-the,distances for the A basis and the result of its one-step
ahédd prediction
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Fig. 5 — The time series corresponding to the distances for the C basis and the result of its oné-step
ahead prediction
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Fig. 6 — The time series corresponding to the distances fori the G/asis and the result of ifs one-step
ahead prediction
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Fig. 7 — The time seri¢s corresponding to the distanecy for the T basis and the result of its one-step
aheatd prediction
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3.3. Comparison

For comparison, we have used the prediction software package [10], freely
available on the Internet.
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g. 8 — The time series corresponding to the distances for the A basis/and the result of its one-step
ahead prediction using the predictor in [{0}

The results obtained with several prediction methods available in this sgitware
are significantly poorer than the results obtained (with’eur predictor. 1n Fig. 8, a
sample of prediction results obtained with the VR A package is shown/ The method
used in the VRA package is based on the nonparametric modeling, Which consists
in directly deriving the model from given data. In VRA, this is-dorg using local
polynomial models.

The parameters chosen to construct the maddel to generate| predictions are: type
is one-step ahead, predictor is radial basis, RBF is Gaussian, the distance is
Euclidean, and 10 neighbors are used for the train period, we\use samples between
1 and 650 and for test sequence, safmplés between 651 dnd 749.

A normalized error about 1.195( for test periodsin case of basis A, 1.107 in case
of basis T and 0.965 for basis ¢. That“was the best performance which we obtained
with the VRA package. A compariseil between tlig-performance of the neuro-fuzzy
predictor and prediction withh VR A is presented, in-“jable 2, where RMSE denoted
root mean square error.
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Table 2

Comparison between neuro-fuzzy predictor and prediction performed with VRA

Basis Error type NFP VRA
A NMSE 0.513 1.195
RMSE 1.127 2.69

C NMSE 0.566 1.057
RMSE 1.930 7.201

T NMSE 0.927 1.107
RMSE 1.803 3.72

G NMSE 0.488 0.965
RMSE 1.214 4.602

"A" series prediction error histogram
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Fig. 9 — Histogram of the prediction error for A basis

The histogram of the errors as show in Fig. 9 is close/fo'\a Gauss functiop—That
indicates that most of the relevant information in the/dafa has’ been used by the
predictor.

4. Discussion and corclusions

We have proposed a modified method to deal with the prediction of bases
sequences, converting the sequence of bagesin several sequences,-each for a single
basis, according to [11]. Moreover, we use a neuro-fuzzy predictor to perform the
prediction; then, the distances are £onvericd back to Curseat positions of the
individual bases, and the complete /sequenge is reconstiucted. The method yields
better results than those obtained with several other predictors.

We have found that the cofiversion to distang€s- much enhances the results.
Actually, we also tried the amethod\ of first converting the bases symbols into
numerical values like A2/}, C22, G>3, T4 moreover A>1, C2>2, G>4,
T->8, but the results obtajiied‘werg’poor.
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As expected, the separation of the trend and fast varying components plays an
important role. Indeed, we have tried another the prediction directly for the
distance series between bases, with very poor results.

Concluding, we have introduced a new method for representation and a neuro-
fuzzy predictor to derive the sequence of genes. We have tested the method on the
HIV virus genome. The use of distance-based series alleviates some drawbacks of
numerical coding the gene types. The use of the distance representation and of the
neuro-fuzzy predictor looks promising, at least compared to other prediction
methods reported in the literature.
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