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Abstract: In previous papers, we used a two-compongfit, desomposition of€ thef
predicted signal consisting in genomic time series; namely low)and fast varying
components have been determined. In this paper, we/improve the methodology of
time series preprocessing for prediction. The third component ponsists in the part of
the original series which is not well predicted using the pré¢yious decompisition, The
prediction using this new method of decompogition show significantly improved
results.

1. Introduction

Time series prediction is a topic/of interest in manyAppliedtions, ranging from
economy to medical science. Due {o the\importance of/the ftopic, a large number of
tools have been applied to prédiction,/ including, linear” models and nonlinear
models as neural networks (se¢ { ¥} for/a specific rigfal network used in the Santa
Fe contest for prediction), hiddén Markov models {2}, and fuzzy systems [3]. In
this paper, we present a he¢thod’ for improvisig ptediction and we apply it to a
neuro-fuzzy predictor uséd in predicting genomiz/time series.

Genomic time serieé atialysis is today a/majortopic in bioinformatics. This field
can be defined as (‘the computational{organisation and analysis of biological
information" [4]. Bioinformatics and its\icols are needed because of the huge
amount of genomdic*ddta in the DNA/ sequences available today [5]. In the field of
modern bioinformatics, the study \of-“viruses has contributed to many of the
methods, even thGugh/viruses are minute in genome size and complexity relative to
their host genofnes/[5]. The ne¢d for methods to collate analyse genomic sequence
data was/amposed by complete viral/genomes sequencing over the last 30 years [5].

For & betterunderstanding of host-virus interactions in a biologic system, we
need an mntegration of thg knowledge dispersed at various levels: virus specific
infépmationin databases; the literature and the 'walking' expert systems [5].

I the post genemic ¢rd) the next stage is the functional genomics - the study of
genes, ‘their resulting proteins, and the role played by the proteins in the body's
biochemical précesses [6].

In the functional genomics, for a sequence with unknown role, the searching of
thg similar, sequences from those with known functions is performed. As a tool for
identifying the similar sequences, we selected a neuro-fuzzy predictor. Based on an
idea of-the first author, a predictor which learned a specific sequence may

""A vegsion of part of this paper has been presented to ECIT2004 conference, 21-23
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recognize a similar sequence and reject a foreign sequence [7]. The deci§ion| of
recognizing or rejecting could be made based on the small, respectively high
prediction error values [8].

The time series prediction is applied in gene prediction. In [8-10), Wk tested a
neuro-fuzzy system for time series predictions. The time series are Obtdined/in [8-
10] by calculating the distances between successive occurrences gf/the sime basis
(A, C, GorT) in a genomic sequence. This methodology for prédiction was firsk
introduced for application to the prediction on natural language texts,/ namely/for
the distance between words [11].

In this paper, we improve the time series preprocessing methodology\/for
prediction and we discuss some consequences of the ‘resulty obtained on the
genome of a virus. While in the previous papers we’ have decomposed the tizne
series only in two components, in this paper we add\ a third component. This
component could have the significance of a new part of the series, vhich/was not
well separated in our previous approach.

The organization of the paper is as follow. The\second section is devgted to the
methodology. In the third section, results are\presented. The/last two sections
contain a discussion and conclusions.

2. Methodalogy

The basic predictor structure fisedyin this paper ig dépicted in Fig. 1. This is a
one-step predictive system baséd ¢ Jugeno fuzzy systems. For the slow and fast
varying component, we usgd’ two’ such neureciuzzy” predictors. The network
architecture is a finite response predictor topology/iising Sugeno systems for the
“weights” [12]. A numbé&r ef twelve fuzzy/systems act as “multipliers” of the
delayed samples. The {ype-0 Sageno fuzzy system with single input and single
output was chosen for these cells. The ipput of fuzzy systems is characterized by
seven Gauss type ménibership functiong.

Fig, N~ The topology of transversal type filter with Sugeno fuzzy system network [12]



We recall the input-output function of the neuro fuzzy predictor in Fig. 1.
described by the equation (1), [10], [11].
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In (1), M denotes the number of Sugeno fuzzy systems/ N ‘the/number/of
membership functions for each Sugeno fuzzy system, a,, derotes the centers of thé

Gauss type membership functions, S, are the value of the singletons and w, are
the weights.
The first stage is preprocessing the time series A\ and Consists in 2 low’ pass

filtering for obtaining the slow varying (trend) component, A’ . The fast varying
component, A,{ , is determined by subtraction:
f _ s
An - An _ A.ﬂ (2)
The low pass filtering consists in a méving average procediire!
The first prediction error £, is obtained ffom the original tive series A, using
the predicted slow varying condpofient, YA’ and the predicted fast varying

component A’
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namely £, is deferminéd’by subtraction;
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Various predictor types can be chosen for the primary prediction error. In this
study, we use a neuro-fuzzy predictor, similar with the predictor for the slow and
fast varying component predictions.

The rational for using this type of predictor is based on the complexity of the
input-output function of this predictor, on its large number of parameters, afic on
the possibility to use various algorithms to train it, as explained below.

The class of predictor is given by the input-output function of the predicting
system. This function is a ratio with sums of exponentials at the nominator, andthe
denominator. Therefore, the capabilities of this type of predictor are highéy'than for
simple fuzzy logic systems with triangular or other piecewise ipput #nd output
membership functions. Also, the characteristic function of this predictoy’is more
intricate than the sum of sigmoidal functions, as in the cas¢ of‘a single layér
perceptron. Compared to a MLP using sigmoidal neurons, ‘which has the
characteristic function essentially represented by composed sigmoidal functions,
the characteristic function of this predictor is still more infrigate; becausg it is a
ratio of nonlinear functions. Compared to a MLP usirg Gaussian RBF neurofs,
which has the characteristic function represented essential!y\byy’composed Gaussian
RBF functions, the characteristic function of this predictor/is still more intricate,
for similar reasons as above.

Regarding the number of parameters involved,, showing the\ adaptation
flexibility of the predictor, this predictor is similar to the ones discussed above.
Moreover, by adding belief degrees to the rules of the TSK-fuzzy systems
representing the neurons, the number of patameters is easily in¢reased.

Regarding the possibility to use varigus learfiing algorithms, ingiuding gradient-
type algorithms, we notice that the gradient algorithms ar¢ eésily adaptable to this
predictor, in contrast to classic fuzzy systems with piecewige input and output
membership functions, which do noi/aceepy classic gradient-algorithms (because of
the non-derivability of the functién):

3. Simulation Resuits

The primary predietion\error € for a\time series which represents distances
n

between successive o¢currence of the A/basisiin HIV-1 genome, ENV gene [13], is
shown in Fig. 3.



The primary prediction error
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Fig. 3 - The primary prediction error £,
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Fig. 4 - The self-correlatjon function of the primagy predietion error £,

The self-correlation functions, of\the two errors\(s€e Fig. 4 and Fig. 6) show
very little correlation (< 0.0§) meaning that, the lerrors are mainly white noise — a
fact confirmed by the histogram of the errofs.

The secondary predictien error is shown in Fig. 5. Trying to train a predictor for
the primary error signal,”we obtained (three/influence zones of the predictor
outcome, marked with the airows in Fig: 5:Fhese influence zones correspond with
the peaks on the primary prediction/efrror, € . A way to reduce the influence of

peaks is to reduce thevamplitude ef-'aberrant values" to the value of the standard
deviation.



The secondary prediction error
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Fig. 5 - The secondary prediction error 77, . Arrows mark the influence the peaks haye on the

predictor outcome
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Fig. 6 - The self-correlation fupttjon of the secondary pretlictienerror 77,

The residual error 7, shows regiohs where the predictpr has been significantly

fooled by peaks (“aberrant values™ in the tim¢ sSeries; large errors with both
positive and negative values occur in the prediction just after the peaks.
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Fig. 7 - The histograms of the errors: a) initial error. b) histogram for the secondary prediction ety
7, - Notice that there is no reduction in error range from -0.1 to 0.33.

The prediction does not change the general appearance of the error tiing series,
as the error €, (solid thin line) and the error 7, (dotted line) look quite simitar, as

shown in Fig. 8. With solid line, was represented the difference bgtween & and
n, - For a better visibility, a zoom for the last 100 samples is illusfrated inFig. 9.

The final prediction and error
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Fig. 8 - The true and the predicted A fime series, as trained with the’system in Fig. 2 on the HIV1
génomic segment of the EMV gene.



The final prediction and error
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Fig. 9 - The true and the predicted A time series, as trained with the system in Fig. 2 on the/HIWVl
genomic segment of the ENV gene. Zoom for the samples [615, 715]. No filtering of aberrdnt erroyps.

The signals represented in Fig. 8 correspond to the TEST period. The/Accuracy
of prediction is notable (see Fig. 9); the maximum difference, ¢f about 0.37, is
reached by a single sample (see Fig. 10).

Histogram of the final prediction error
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Fig. 10 - The histogram of tiie final prédiction error

The histograms of the errors, illustzated i’ Fig. 7 and Fig. 10, are close to
Gauss functions. That shows that mest ©f the relevant ipformgtion in the data has
been used by the predictor. The Gauss-like\Histogram i fot, of course, a guarantee
that the signal (remaining error) ispure white nois¢, but if 1§ a necessary condition
for the error being white noise/Mofenver, it is an jndication that there is no strong
global correlation in the remaining/signal. Thereforg, we need other tools to
determine the degree of infOrmation extraction-from the signal. Such a tool is the
self-correlation function.



4. Discussion

The prediction of the error time series shows that: the prediction applied to £,

does not change the general appearance of the error time series, as the error £, and
the error 7, look quite similar; the correlation functions of the two errors show

very little correlation meaning that the errors are mainly white noise — a fact
confirmed by the histogram of the errors.
The remarks above lead to some consequences on the genome time series:
= There is a certain correlation in the distribution of the A, C, G, T bases, yet
a significant part of the distribution along the genomic series of the bases
looks random.
= Coherent information is not equally distributed on the four bases, because
the errors look rather different.
= A ssignificant part of the coherence is not quite specific to genes, but to/the
overall genome. Indeed, training on a gene the predictor does not guarantee
in general. Removing the part of the coherence that is not gene-specific
might improve the identification of the gene segments and splice pésitions
a hypothesis that must be tested yet.

5. Conclusions and further work

We conclude that the two-step NF predictor has extracted \thie available
information in the time series and that further prediction should’be based on
models of white noise rather on correlation in the signal /in this respect, a H¥M-
based system might work better.

We have not yet studied the “word”-level distributions, ¥.¢., the time series Of
the distances between “di-bases”, like AC, AG, /AT .\ /sequences/This task
remains to be fulfilled. Adding di-bases predictiori may improve the selectivity of
the predictor in recognizing a specific sequence.

To improve the prediction after the occurtefce of the aberrani/vdlues, while
preserving the predictability of the aberrant yalues, during the/training stage the
aberrant values are taken into account in the sectien preceding ¢hem, while they are
replaced by the value 0 in the sections succeeding them.
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