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Abstract. We address the prediction of the gene\struditre using # new filethod
and tools, involving the sequence of distaiices \betwgen bases and neuro-fuzzy
predictors. The method is tested on the HIV\wvirus)genome and the restits look
promising compared to other methods. We\stiggést that new, global prediction
methods based on implicit, not explicit knowigdge, may be as strong as the cur-
rent, largely explicit knowledge baséd prediction methods.

1 Introduction

DNA analysis has seen lasy years a tremendoys/development. DNA includes huge
amounts of data that mu&t be interpreted. The pperations to be performed include the
recognition of the type(of‘organism to which-the gére belongs — when the genetic ma-
terial comes from different sources, the/identification of specific segments in the
DNA sequence — seciions that represent, the genes — and the identification of the pro-
teins the genes £od¢ ~ the prediction,of the-genes expression. Because of the huge
amount of data ip thie genetic material.\the operations must be automated. The first
two tasks abgve are somewhat simitar ang may use similar tools. They are both essen-
tially relatéd td the Ydentification ,of patterns in the genetic code. Several tools have
been deveioped for these pufposes;-including hidden Markov models (HMM) [1], sta-
tistica)/methods,/and fuzzy {2-4]-and neural models that inherently reflect the statis-
tics. Here) continuing [5-9), we present results using a novel approach in dealing with
the genetic\sequence prediction, based on its decomposition into four “distance se-
ries and on the use of Hieure<tuzzy predictors in a hierarchical pattern identification
system.

The syntagma “gene prediction” has several meanings, relating to the object of
prediction and depending on the research context. One meaning is to predict the splice
sites [10]; arother ofie is to determine what the gene expression result would be (the
synthesized proteins).




2 The Pattern Detector

We approach the prediction task from a fresh point of view and propose & new tvpe of
gene prediction with a view to classify the genetic sequences, to deterinine the right
splice sites and to classify the information they carry. For this purpoge,/ we preprocess
the original, raw base sequence and first produce four base sequé¢ncesy fop the four
bases, A, C, G, and T respectively (Fig. 1).

A-base sequence
> . _A___A_A___A\/.

C-base sequende
> ... C__C___C_1C ..

G-base sequence
’ . G__G. \CG\ G

..AGCATGCCA...

Original base sequence

Fig. 1. Processing the base sequence
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Fig. 2. Details of the process$ing ¢f the individual seguences

Each of the four,series \is then preprogessed to derive the “trend” and the “fast
varying” componeritsy/ THe iow-pass filtering is performed by a 3-step MA filter, ac-
cording to the formuia:

yirt| = (x[n = Woraln ]+ x[n +1])/3. @

Each of.the twe'cOmponents is\then predicted and the results are summed to gener-
ate the fipal prediction. Becayse the neuro-fuzzy system used in the prediction needs
normalized values (values in the){-1, 1] interval), the distance series are normalized
according to

y[n] = 2 : %;X[ni /- ('xmax + 'xmin )/2]/('xmax - 'xmin) . (2)

max > Ami/2¢/the maximal and minimal elements in the series.

whereVx
To improvg the prediction outcome, exceptional events (large distances, far out of
the spreading range), 1f any, may first be eliminated. The sketch of the processing of
the individu4l base sequence prediction is shown in Fig. 2.
We have used 4 neuro-fuzzy predictor, which has been developed and tested in our
group/in previous years. The architecture for one step predictive system is explained



below (see [2]). The predictor is a multi-fuzzy system network with inputs repre-
sented by the delayed samples, and the fuzzy cells are Sugeno type 0, with Gauss.in<

put membership functions. The formula W X )= exp(— (x—a)'/c ) repfesents
the membership degree L of the input X ; a is the center and O is the spréading of

the input membership function. Equation (3) stands for the input-output/function, of
the neuro fuzzy predictor.

M N Caskman)? | N _(xnfk—akl)ﬂ A3)
r=Yw | Xboe T [¥e
k=0 =1 =1 _i

We denote by M the number of Sugeno fuzzy systems, N th¢ number of membership
functions for each Sugeno fuzzy system, index k = 0+M, index /&i+N, a,— the centeis
of the Gauss type membership functions, f;— the singletOnies and w, — the weights.

Notice that the individual predictors may be of any type, but/FNN predictors have
several advantages. The rational for using this type 4f.predicior is based on fiic com-
plexity of the input-output function of this predictur, s ity large number/of parame-
ters, and on the possibility to use various algorithms to train it, as explained below.

The class of predictor is given by the input-output ‘{unction of the predicting sys-
tem. This function is a ratio with sums of exponentials at the nonjinator and the de-
nominator. Therefore, the capabilities of Ahis type of predictop’are higher than for
simple fuzzy logic systems with triangulai or other piecewise input-and output mem-
bership functions. Also, the characteristic function of this predicter’is more intricate
than the sum of sigmoidal functions /s i/the\Case of a single 1ayer perceptron. Com-
pared to a MLP using sigmoidal ngtrons, Avhich has the characteristic function repre-
sented essentially by composed sigmoidal functions, stiil/the characteristic function of
this predictor is still more intriate, becatse it is a rati<y of nonlinear functions. Com-
pared to a MLP using Gaussian\RBF neurons, which hag the characteristic function
represented essentially by ¢omposed /Gaussian RBE finctions, the characteristic func-
tion of this predictor is still\\nore intricate, for similar yeasons as above.

Regarding the numbeh of parameters invelyed, showing the adaptation flexibility
of the predictor, this predictor'is similar to\the ones discussed above. Moreover, by
adding belief degrees fo the pules of the TSK~{uzzy systems representing the neurons,
the number of parameters i$ easily increased.

Regarding the possibility to usé \arious/learning algorithms, including gradient-
type algorithps, ‘gradient algorithms dre-edsily adaptable to this predictor, in contrast
to classic fuzzy\systems with pigcewise input and output membership functions,
which doi6t accept classic gradient-algorithms (because of the non-derivability of the
function).

Thé training/of the predi¢tors refer to the adaptation of several sets of parameters,
nandely\of the weights w;, outptiy/singletons, and parameters of the input membership
funttions; 4,0, - Two bisio versions of the training algorithm can be used. According

to the first, separate 100ps /are used to adapt each of the above mentioned sets of pa-
rameters. We will name this type of algorithm “internal loops algorithm.” The second
algorithm uses/a single loop to adapt all the parameters.



The overall multi-predictor system includes four individual predictors and a deci-
sion block (see [9]). This block fuses the results provided by the individual predictors
to generate the recognition decision. Notice that, while current prediction methods use
explicit knowledge on the gene sequences, system described here uses implicit ipfor-
mation, in the sense that the information is included in the predictors, after apprapti-
ate training.

3 Results

In this section, we briefly present several results obtained by traifing the individual
fuzzy predictors on the ENV gene (data source [11]), for the distance series corrg-
sponding to the A, C, G and T series. The summary of the results are shown in Fig-
ures 3 and 4, including the train results on the ENV gene, as well gs the test results,
both on ENV and on other HIV genes, moreover on genes from pther viruses. In these
figures, MSE denotes the mean square error and NMSE the nermalized MSE]
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Fig. 3. Results obtained by Araining on the ENV seguence,-using an algorithm with inner (par-
tial) loops. The test period includes Samples with dexes 636 to 749 for A basis, respectively
367-480 for G basis. The train‘period: samples #1-tq 635 (A basis), respectively 1-480 for G, 1-
366 for G basis

The results obtained by tlie training with eittter algorithm indicate that most genes are
identified by the predictor for the A-base series. In the Fig. 3, this predictor confuses
the ENV with the NEF gene when \only the NMSE is used, but behaves correctly for
the MSE (M3 E for/NEF > MSE for ENV—test.) Also, there is an almost miss for the
CP gen¢ of the Mosaic virus (NMSE 0.634, vs. 0.609 for ENV-HIV, but MSE-
CP=04)7 I vsx MSE-ENV=0.084.}

All the otlier genes arg correctly rejected by the NMSE values alone for the A-
sefies predictor, and A1l are/gdirectly rejected by a combination of MSE and NMSE of
this predictor. Excellent \restlts are also obtained with the C-series predictor, with the
exception, again, /Aot the CP gene of the Mosaic virus. Poorer results are obtained with



the predictors for the T-series, which, however, correctly rejects the CP gene of ¢he
Mosaic virus. These results show that a combination of predictors is able to differen-
tiate and even identify the genes.
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N

2
BESIT40-
NMSE

B Bc

3447344

b

m m

MSE
oc

g
g " J84R344
i

Brror values
o o

=
=

I'l I
| MMSE

|
|
HILCEf H |
ﬂ_J;ﬂ rEH L [EHR : JLEhr ,ﬂﬁﬁimngnarsna-

HE%-) MY-CP HEY< MSE

h__-

bt

[

Hiv- HY- HiY-  HY- HiY- HY-YIF HIY- HIY- HIV-

=1

ENY  EMY  GAG  POL  MEF  (test) TAT  WPX  WPR 826 itesty O o7
{test) (train) (test) (test) (test) itest) ftest) e ife (igst) it A0S 06-
Entity-Gene NMSE

Fig. 4. Results obtained by training on the ENV sequence, ysing an algorithm without inner
loops. The test period includes samples with indexes between 636 and 749 for A basis. The
train period includes samples with indexes between ihand 635 for A basis, respectively 1-344
for C basis, 1-506 for T basis
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Fig. 5. Error evolution during training on the \¥ig. 6. Error histogram for the training re-
A series (ENV ger) sults on the ENV gene, A basis, for the high-
frequency component

The error eyolution during training shows a correct learning process with steadily de-
creasing errog (see example in Figl 5). The error histogram show almost-Gauss distri-
butions,/meaniag that the information'in the series has been well extracted (see an ex-
ample/in Fig. 6):

4 | Comments and Canclusions

The Tact that séveral base sequences yield similar results in prediction, when a predic-
tor trained on'a specific sequence is used, may have several interpretations. The first



and easiest interpretation is that the predictor has not been trained well enough. We
have to reject this hypothesis, because the training leads to small enough normalized
errors, while the error values histogram shows a Gauss-like distribution.

The Gauss-like histogram is not, of course, an indication that the signal (remaining
error) is pure white noise, but it is an indication that it might be and a necessary ¢on-
dition for being white noise. Moreover, it is an indication that there is no strong globat
correlation in the remaining signal. A Gauss histogram, however, is no guarasitee that
the signal is a noise. Therefore, we need other tools to determine the degreg 6 infor-
mation extraction from the signal. Such a tool is the self-correlation fungtion.

The second possible interpretation might be that the series carry gimiilar informa-
tion and represent the almost same generation process. If true, ther/some of\the base
sequences from different genes might belong to the same class and theg, we could dex
termine classes of genes that, according to the prediction criterfen are\symilar in the
same class and dissimilar in different classes. The classes {wauld be information<
specific, while members of the same class still may look quite \different. This finding
may shed new light on the genetic processes and may have\impottant consequences
both in biology and bio-informatics.

References

1. Genie: Gene Finder Based on Generalized Hidden ,Markov — Models.
www.fruitfly.org/seq_tools/genie.html

2. Gasch, A.P., Eisen, M.B.: Exploring the £onditional Coregulation-of \Yeast Gene Expres-
sion through Fuzzy K-Means Clustering. Génome/Biology 2002,-3(¥1): research0059.1 —
0059.22. http://rana.lbl. gov/papers/Gdsch/ GB\2002.pdf

3.  Guthke, R., Schmidt-Heck, W., Hahn. X, #faff, M.: Gene-Expression Data Mining for
Functional Genomics using Vazrzy Technology.
www.biochem.oulu.fi/BioStat/Guthke_Kiuver2002.pdf

4. Pasanen, T.A., Vihinen, M.:(Formulating Gene Regulator§ Patterns with Fuzzy Logic,
http://www ki.se/icsb2002/pcf/ICSE_ 1'79.pdf

5. Fira, L.I., Teodorescu, H.N.: ‘Genome Bases Sequencts Characterization by a Neuro-
Fuzzy Predictor, Proc. IEEE-EMBS 2003 Conference, Cancun, Mexico, 3555-3558

6. Teodorescu, H.N.: Thé Dygamigs of the Words. Invited Plenary Lecture, 11th Conf. Ap-
plied and Industrial Mathematics, 29-31 May. 2003. University of Oradea, Romania,
http://caim2003.rdsoyro/

7. Teodorescu, H.)./Fira, L.I.: Predicting fitfe Cienome Bases Sequences by Means of Dis-
tance Sequences and ‘a/Neuro-Fuzzy Predictet, /F.S.A.1L., Vol. 9, Nos. 1-3, (2003), 23-33

8. Teodorescu/F.N.: Genetics, Gene Prediction, and Neuro-Fuzzy Systems—The Context and
a Program Fyoposai-F.S.A.L, Vol. £,/Nos)\1-3, (2003), 15-22

9. Teodorescn, .M, Fira, L.I.: A Hybvigd’ Data-Mining Approach in Genomics and Text
Structyres, Proe,/The Third IEEE \nternational Conference on Data Mining ICDM 03,
MelbBourne, Florida, USA, Ndyember 19 - 22, (2003), pp. 649-652

10. Thangraj{ T-A.: A Clean Data Sei of EST-Confirmed Splice Sites from Homo Sapiens and
Standards for Clean-up Precedures. Nucleic Acids Research 1999, vol. 27, no. 13, 2627-
2637

X, Los Alamos National Laboratory: http://hiv-web.lanl.gov/content/hiv-
dblalign_current/alignsindex.html

ES




